Fibonacci Melodies

Eduardo Ibargüengoytia

September 21, 2020

Music respresentation

Figure: Piano and Score representation

Figure: \mathbb{Z}_{12} the 12 element cyclic group

$$
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24
$$

Preserves the addition operation. At 11h my friend said we would meet in 3 hours, and I only have a wrist watch. We call the operation $\operatorname{Mod}(12)$, and can be applied to arbitrary sets of integer numbers.

The Fibonacci sequence is a linear recursion defined by

$$
f_{n+1}=f_{n-1}+f_{n} \quad \text { for } n \in \mathbb{N}_{\geq 1}
$$

where f_{n} is the n-th Fibonacci number with $f_{0}=0$ and $f_{1}=f_{2}=1$ This means that each number in the sequence is the sum of the two preceding ones. Starting with 0 and 1 as the first two terms of the sequence, the Fibonacci sequence looks like this for the first few terms :

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

Use of the sequence in visual arts and architecture.

Figure: Fibonacci Spiral

First Proposal

We use directly the operation $\operatorname{Mod}(12)$ to relate each fibonacci number to a unique note in the western music convention.
To each note we now associate a number:

Figure: Full Scale

Explain the miracle!

Note	Fibonacci Sequence	Result
C	0	0
C\#	1	1
C\#	1	1
D	2	2
D\#	3	3
F	5	5
G\#	8	8
C\#	13	1
A	21	9
A\#	34	10
G	55	7
F	89	5
C	144	0
F	233	5
F	377	5
A\#	610	10
D\#	987	3
C\#	1597	1
E	2584	4
F	4181	5
A	6765	9
D	10946	2
B	17711	11
C\#	28657	1

Result

Figure: Full Scale - Mod(12)

> Play

Other scales

Harmonic A Minor Scale

The A Minor Scale consists of 8 notes:

$$
A-B-C-D-E-F-G-G \#
$$

We use the operation $\operatorname{Mod}(8)$ on the sequence, and get:

$$
(0,1,1,2,3,5,0,5,5,2,7,1)
$$

Pentatonic scales

Play

Play

