Plan Explanations as Model Reconciliation: Moving Beyond Explanation as Soliloquy

Authors: Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang, Subbarao Kambhampati

Speaker: Abetare Shabani

University of Luxembourg December 2020

Outline

- Introduction
- Related work
- Properties of explanations
- Algorithm presentation
- Evaluation of performance of algorithms
- Conclusion & Future work
- Citations

Motivation & Goal

- Different model used by AI and different from human
- Al systems are mostly called to explain their plans and behaviors
- The authors believe that explanations are best explained in light of model differences
- Goal: Explanation as Model Reconciliation problem

HUMAN IN THE LOOP

Why and How?

https://medium.com/vsinghbisen/what-is-human-in-the-loop-machine-learning-why-how-used-in-ai-60c7b44eb2c0

Introduction

- Explanation to humans-in-the-loop
- Earlier work
 - Planner explaining decision on respect of its own model
 - What issues can encounter?
- Explanations should be robot's attempt to change human's model to correspond to its plan

Contribution

- Model explanation as Model Reconciliation Problem
- Robot's optimal plan
- New model-search algorithms
- Explanation generation system

Multi-model Setting Scenario

(:action move :parameters(?from ?to – location) :precondition (and (robot-at ?from) (hand-tucked) (cr

:effect

(and (robot-at ?from) (hand-tucked) (crouched)) (and (robot-at ?to) (not (robot-at ?from))))

(:action tuck :parameters() :precondition :effect

() (and (hand-tucked) (crouched)))

(:action crouch :parameters() :precondition :effect

() (and (crouched))) fetch

Fetch Robot

https://fetchrobotics.com/

Related Work

- The work is supported by psychology studies
 - Lombrozo, 2006,2012.
- Optimal plan valid and better than other alternatives
- Different from other model change algorithms
- Most of the work done involved humans entering the land of planners

Classical Planning Problem

- Planner's plan comprehensible to humans
- $M = \langle D, I, G \rangle$
 - $D = \langle F, A \rangle domain$
- Solution $\pi = \langle a_1, a_2, ..., a_n \rangle$
- π^* known as the cheapest plan
- Optimal plan not always is optimal in $M_{\rm H}$

Multi Model Planning Setting

- Tuplet of $\langle M_{\rm H}, M_{\rm R} \rangle$
- Two approaches
 - 1. Change its own behavior in order to be explicable to the human
 - 2. Bring the human's model closer to its own

Model Reconciliation Problem

- Tuple $\langle \pi^*, \langle M_{\rm H}, M_{\rm R} \rangle \rangle$
- Mapping function $\Gamma: M \to s$
- Model change actions can make only one change at a time
- Solution edit functions $\{\lambda_i\}$ that can transform $M_1 \rightarrow M_2$

Multi Model Explanations

- Plan is more optimal in the updated model than in original one
- The update of the model can be negotiated by humans
- Each solution for this problem requires these :
 - Completeness
 - Conciseness
 - Monotonicity
 - Computability

Plan Patch Explanation

- Incomplete
- Limitation: ignores model differences, contains information that does not need to be revealed
- Solution : provide the entire model difference to the human

Model Patch Explanation

- Easy to compute
- Limitation: far from being concise due to large size
- Goal: minimize the size

Minimally Complete Explanation

- Shortest complete explanation
- Fetch Robot the smallest example of MCE
- Human can compute the optimal plan given a planning problem.

Model-space search for MCE

- Equal importance to all model corrections
- Proposition 1: selection strategy of successor nodes to speed up search
- Proposition 2: feasibility of the plan in the modified planning problem is a necessary but not a sufficient condition for a valid explanation

Algorithm 1 Search for Minimally Complete Explanations

1:	procedure MCE-SEARCH
2:	Input: MRP $\langle \pi^*, \langle \mathcal{M}^R, \mathcal{M}^H \rangle \rangle$
3:	<i>Output</i> : Explanation \mathcal{E}^{MCE}
4:	Procedure:
5:	<pre>fringe</pre>
6:	c_list \leftarrow {} \triangleright Closed list
7:	$\pi_R^* \leftarrow \pi^* \qquad \triangleright \text{ Optimal plan being explained}$
8:	$\pi_H \leftarrow \pi$ such that $C(\pi, \mathcal{M}^H) = C^*_{\mathcal{M}H} \triangleright$ Plan expected by human
9:	fringe.push($\langle \mathcal{M}^H, \{\}\rangle$, priority = 0)
10:	while True do
11:	$\langle \widehat{\mathcal{M}}, \mathcal{E} \rangle, c \leftarrow \text{fringe.pop}(\widehat{\mathcal{M}})$
12:	if $C(\pi_R^*, \widehat{\mathcal{M}}) = C_{\widehat{\mathcal{M}}}^*$ then return $\mathcal{E} \triangleright$ Return \mathcal{E} if π_R^* optimal in $\widehat{\mathcal{M}}$
13:	else
14:	$c_list \leftarrow c_list \cup \mathcal{M}$
15:	for $f \in \Gamma(\mathcal{M}) \setminus \Gamma(\mathcal{M}^R)$ do \triangleright Models that satisfy condition 1
16:	$\lambda \leftarrow \langle 1, \{\widehat{\mathcal{M}}\}, \{\}, \{f\} \rangle$ \triangleright Removes f from $\widehat{\mathcal{M}}$
17:	if $\delta_{\mathcal{M}^H,\mathcal{M}^R}(\Gamma(\widehat{\mathcal{M}}),\lambda) \notin c_{\text{list}}$ then
18:	fringe.push $(\langle \delta_{\mathcal{M}^H,\mathcal{M}^R}(\Gamma(\widehat{\mathcal{M}}),\lambda), \mathcal{E} \cup \lambda \rangle, c+1)$
19:	for $f \in \Gamma(\mathcal{M}^R) \setminus \Gamma(\widehat{\mathcal{M}})$ do \triangleright Models that satisfy condition 2
20:	$\lambda \leftarrow \langle 1, \{\widehat{\mathcal{M}}\}, \{f\}, \{\}\rangle \qquad \qquad \triangleright \operatorname{Adds} f \operatorname{to} \widehat{\mathcal{M}}$
21:	if $\delta_{\mathcal{M}^H,\mathcal{M}^R}(\Gamma(\widehat{\mathcal{M}}),\lambda) \not\in c_{\text{list}}$ then
22:	fringe.push $(\langle \delta_{\mathcal{M}^H,\mathcal{M}^R}(\Gamma(\widehat{\mathcal{M}}),\lambda), \mathcal{E} \cup \lambda \rangle, c+1)$
23:	procedure PRIORITY_QUEUE.POP $(\hat{\mathcal{M}})$
24:	candidates $\leftarrow \{ \langle \langle \widehat{\mathcal{M}}, \mathcal{E} \rangle, c^* \rangle \mid c^* = \arg \min_c \langle \langle \widehat{\mathcal{M}}, \mathcal{E} \rangle, c \rangle \}$
25:	pruned_list $\leftarrow \{\}$
26:	$\pi_H \leftarrow \pi \text{ such that } C(\pi, \hat{\mathcal{M}}) = C^*_{\hat{\mathcal{M}}}$
27:	for $\langle \langle \widehat{\mathcal{M}}, \mathcal{E} \rangle, c \rangle \in$ candidates do
28:	if $\exists a \in \pi_B^* \cup \pi_H$ such that $\tau^{-1}(\Gamma(\widehat{\mathcal{M}}) \Delta \Gamma(\widehat{\mathcal{M}})) \in \{c_a\} \cup pre(a) \cup$
	$eff^+(a) \cup eff^-(a)$ then \triangleright Candidates relevant to π_R^* or π_H
29:	pruned_list \leftarrow pruned_list $\cup \langle \langle \widehat{\mathcal{M}}, \mathcal{E} \rangle, c \rangle$
30:	if pruned_list = ϕ then $\langle \widehat{\mathcal{M}}, \mathcal{E} \rangle$, $c \sim Unif$ (candidate_list)
31:	else $\langle \widehat{\mathcal{M}}, \mathcal{E} \rangle, c \sim Unif(\text{pruned_list})$

Minimally Monotonic Explanation

- Preserves completeness and monotonicity
- Proposition 3: MME solution is equal to the differences between M and $M_{\rm R}$
- Proposition 4: MMEs are not unique to an MRP problem.
- Proposition 5: MCE may not be a subset of an MME

Model Search for MME

- Search over the entire model space
- Goal: find the largest set of model changes for which the explicability criterion becomes invalid for the first time

```
Algorithm 2 Search for Minimally Monotonic Explanations
  1: procedure MME-SEARCH
  2: Input: MRP \langle \pi^*, \langle \mathcal{M}^R, \mathcal{M}^H \rangle \rangle
  3: Output: Explanation \mathcal{E}^{MME}
  4: Procedure:
              \mathcal{E}^{MME}
                                   \leftarrow \{\}
  5:
                                  ← Priority_Queue()
  6:
              fringe
                                  \begin{array}{c} \leftarrow \{\} \\ \leftarrow \{\} \end{array}
                                                                                                                                         Closed list
              c_list
  7:
              h_list
                                                                                                  List of incorrect model changes
  8:
              fringe.push(\langle \mathcal{M}^R, \{\}\rangle, priority = 0)
  9:
              while fringe is not empty do
10:
                     \langle \widehat{\mathcal{M}}, \mathcal{E} \rangle, c \leftarrow \text{fringe.pop}(\widehat{\mathcal{M}})
11:
                     if C(\pi^*, \widehat{\mathcal{M}}) > C^*_{\widehat{\mathcal{M}}} then
12:
                            h_list \leftarrow h_list \cup (\Gamma(\widehat{\mathcal{M}}) \Delta \Gamma(\mathcal{M}^R))
                                                                                                                               ▷ Updating h_list
13:
                     else
14:
                            c_list \leftarrow c_list \cup \widehat{\mathcal{M}}
15:
                            for f \in \Gamma(\widehat{\mathcal{M}}) \setminus \Gamma(\mathcal{M}^H) do \triangleright Models that satisfy condition 1
16:
                                                                                                                      \triangleright Removes f from \widehat{\mathcal{M}}
                                   \lambda \leftarrow \langle 1, \{\widehat{\mathcal{M}}\}, \{\}, \{f\} \rangle
17:
                                   if \delta_{\mathcal{M}^R, \mathcal{M}^H}(\Gamma(\widehat{\mathcal{M}}), \lambda) \notin c_{\text{list}}
18:
                                       and \nexists S s.t. (\Gamma(\widehat{\mathcal{M}}) \Delta \Gamma(\mathcal{M}^R)) \supseteq S \in h_{\text{-list}} then \triangleright Prop 3
                                         fringe.push(\langle \delta_{\mathcal{M}^R,\mathcal{M}^H}(\Gamma(\widehat{\mathcal{M}}),\lambda), \mathcal{E} \cup \lambda \rangle, c+1)
19:
                                         \mathcal{E}^{MME} \leftarrow \max_{|\cdot|} \{ \mathcal{E}^{MME}, \mathcal{E} \}
20:
                            for f \in \Gamma(\mathcal{M}^H) \setminus \Gamma(\widehat{\mathcal{M}}) do \triangleright Models that satisfy condition 2
21:
                                   \lambda \leftarrow \langle 1, \{\widehat{\mathcal{M}}\}, \{f\}, \{\} \rangle
                                                                                                                              ▷ Adds f from \widehat{\mathcal{M}}
22:
                                   if \delta_{\mathcal{M}R,\mathcal{M}H}(\Gamma(\widehat{\mathcal{M}}),\lambda) \notin c_{\text{list}}
23:
                                        and \nexists S s.t. (\Gamma(\widehat{\mathcal{M}})\Delta\Gamma(\mathcal{M}^R)) \supseteq S \in h_{-}list then \triangleright Prop 3
                                         fringe.push(\langle \delta_{\mathcal{M}^R,\mathcal{M}^H}(\Gamma(\widehat{\mathcal{M}}),\lambda), \mathcal{E} \cup \lambda \rangle, c+1)
24:
                                          \mathcal{E}^{MME} \leftarrow \max_{\mid \cdot \mid} \{\mathcal{E}^{MME}, \mathcal{E}\}
25:
              \mathcal{E}^{MME} \leftarrow (\Gamma(\widehat{\mathcal{M}}) \Delta \Gamma(\mathcal{M}^R)) \setminus \mathcal{E}^{MME}
26:
              return \mathcal{E}^{MME}
27:
```

Evaluation

- Explanation generation system
 - For planning: Fast-Downward
 - Plan validation: VAL
 - Parsing: Pyperplan
- The experiment was run on a 12 core system
- Planning domains: BlocksWorld, Logistics and Rover

- No completeness guarantee but better computability of an explanation.
- Replace the equality test:
 - 1. $\pi_{\rm R}^*$ is valid in the new hypothesis model
 - 2. The new plan has become better or at least $\pi_{\rm H}$ is diproved.
 - 3. Each action contributes at least one causal link to π^* in M.
- Proposition 6: Criterion 3 is necessary for optimality of π^* in M

Domain Name	Problem	MPE (ground truth)		PPE		MME (exact)		MCE (exact w/o heuristic)		MCE (exact with heuristic)		MCE (approximate)	
		size	time	size	time	size	time	size	time	size	time	size	time
BlocksWorld	1 2 3 4	10	n/a	5 8 4 7	n/a	3 4 5 5	1100.8 585.9 305.3 308.6	2 3 2 3	34.7 178.4 34.7 168.3	2 3 2 3	18.9 126.6 11.7 73.3	2 3 2 3	19.8 118.8 11.7 73.0
Rover	1 2 3 4	10	n/a	10 10 10 9	n/a	2 2 2 1	2093.2 2018.4 2102.4 3801.3	2 2 2 1	111.3 108.6 104.4 13.5	2 2 2 1	100.9 101.7 104.9 12.8	2 2 2 1	101.0 102.7 102.5 12.5
Logistics	1 2 3 4	5	n/a	5 5 5 5	n/a	4 4 5 5	13.7 13.5 8.6 8.7	4 4 5 5	73.2 73.5 97.9 99.2	4 4 5 5	73.5 71.4 100.4 95.4	4 4 3 3	63.6 63.3 36.4 36.4

$ \mathcal{M}^R \Delta \mathcal{M}^H $	problem-1	problem-2	problem-3	problem-4
3	2.2	18.2	4.7	18.5
5	6.0	109.4	15.4	110.2
7	7.3	600.1	23.3	606.8
10	48.4	6849.9	264.2	6803.6

BlocksWorld	problem-1	problem-2	problem-3	problem-4
Number of nodes expanded for MME (out of 1024)	128	64	32	32

Conclusion & Future work

- Explanations in this multi-model setting become a process of identifying and reconciling the relevant differences between the models
- Future work
 - human's models that are of different form than the robot's, to allow effective learning of the human's models
- Limitations
 - Explanations must be compatible with the planner's model
 - The Robots acknowledge human model to come up with optimal plan
 - The level of abstraction in the Human model.

Citations

- 127 citations
- From which 37 in 2020
- The latest work
 - The Emerging Landscape of Explainable Automated Planning & Decision Making

Thank you for your attention!