Building Jiminy Cricket: An Architecture for Moral Agreements Among Stakeholders

Nélson Caetano

Beishui Liao, Marija Slavkovik, and Leendert van der Torre arXiv:1812.04741v2 [cs.Al] 6 Mar 2019

12/11/2020

Outline

- Research Question
- Artificial Moral Agent (AMA) architecture
- Abstract Argumentation Framework
- Agreement Reaching
- Assumptions
- Challenges
- Conclusion

Research Question

How should an autonomous system dynamically combine the moral values and ethical theories of various stakeholders?

Challenge of Building Moral Council

- Stakeholders might follow different ethical reasoning
- Morality of action should not:
 - be evaluated by majority-poll
 - be unfair
- Solution \rightarrow Engine which...
- Takes input from different stakeholders
- Brings them to an agreement

Artificial Moral Agent (AMA) Architecture - Scenario

- House with air conditioning system
- Ensures lack of dangerous gases
- In case of danger act!
- So...

AMA Architecture - Scenario (contd.)

- ... one day clear sign of marijuana is detected!
- system checks against local system...
- ALERT! illegal substance detected!
- How should the system act?

AMA Architecture - Actions

- 3 possible actions:
 - \circ Do nothing
 - Alert only the adults
 - Alert the local police

AMA Architecture - Stakeholders

- 3 different stakeholders:
 - Family owning the house
 - Manufacturer of the autonomous system
 - Legal system (region in which house is located with the laws governing it)

Definition - Normative Systems

A normative system describes how actions in a system of agents can be evaluated and how the behavior of these agents can be guided.

Definition - Norm

A norm is a formal description of a desirable behavior, desirable action or a desirable action outcome.

Normative System of the Family (NS1)

- n₁:{Healthy} If a child smokes marijuana, then his behavior counts as a bad behavior. (Parents)
- n₂:{Responsibility} If a child has bad behavior then his parents should be alerted. (Parents)
- n₃:{Autonomy} When a child has bad behavior, if his parents have been alerted then no police should be alerted. (Parents)
- a₁ : If smoking marijuana is for a medical purpose, then from smoking marijuana one can not infer that it is an illegal behavior (i.e., n7 is not applicable). (Child)

Normative System of the Manufacturer (NS2)

- n₄ :{**Good To Consumers**} We should do good to our consumers.
- n₅ :{**Legality**} We should obey the law.
- n₆ :{**Protect Privacy**} If we want to do good to our consumers, we should not report their actions to the police unless it is legally required to do so.

Normative System of the Law (NS3)

- n₇:{Healthy, Legality} If a minor smokes marijuana, his behavior counts as an illegal behavior.
- n₈ :{**Legality**} If there is an illegal behavior, then the police should be alerted.

Additionally

- Observations dynamically obtained by sensors
- Beliefs

Abstract Argumentation Framework

- Abstract argumentation framework (AAF)
- Graph F = (A, R)
- A is a set of arguments
- $R \subseteq A \times A a$ set of attacks

Argument Example

- n₁ :{Healthy} If a child smokes marijuana, then his behavior counts as a bad behavior. (Parents)
- n₂ :{**Responsibility**} If a child has bad behavior then his parents should be alerted. (Parents)
- n₃ :{Autonomy} When a child has bad behavior, if his parents have been alerted then no police should be alerted. (Parents)
- a₁: If smoking marijuana is for a medical purpose, then from smoking marijuana one can not infer that it is an illegal behavior (i.e., n7 is not applicable). (Child)

Argument Example (contd.)

- n₇ :{Healthy, Legality} If a minor smokes marijuana, his behavior counts as an illegal behavior.
- n₈ :{**Legality**} If there is an illegal behavior, then the police should be alerted.

Argument Example (contd.)

- n₄ :{**Good To Consumers**} We should do good to our consumers.
- n₅ :{**Legality**} We should obey the law.
- n₆ :{Protect Privacy} If we want to do good to our consumers, we should not report their actions to the police unless it is legally required to do so.

Argument Example (contd.)

For a medical purpose, from smoking marijuana one should not infer that one exhibits illegal behavior.

The child's smoking is for recreational purpose, since an observation shows that it is not for a medical purpose.

An observation shows that it is for recreation O_2 b_1 For recreational purpose

For medical purpose, the norm n₇ is not applicable

a₁

Abstract Argumentation Framework - Full Picture

Abstract Argumentation Framework (AAF)

- $F_v = (A_p, A_e, R, A_g, V, val, \pi)$
- A_p: Set of practical arguments
- A_e^{r} : Set of epistemic arguments
- $\mathsf{R} \subseteq (\mathsf{A}_{\mathsf{p}}\mathsf{x}\,\mathsf{A}_{\mathsf{p}}) \mathsf{U} (\mathsf{A}_{\mathsf{e}}\mathsf{x}\,\mathsf{A}_{\mathsf{e}}) \mathsf{U} (\mathsf{A}_{\mathsf{p}}\mathsf{x}\,\mathsf{A}_{\mathsf{e}})$
- Ag: Set of agents (Stakeholders)
- V: Set of values
- val: $A_p \rightarrow 2^V$
- $\pi: A_{p} \overset{\checkmark}{U} A_{e} \rightarrow 2^{Ag}$
- $F_v = (A_p U A_e, R)$ (reduced form)

Abstract Argumentation Framework

Terminology

- A set of arguments that can be accepted together called *extension*
- E is *conflict-free* iff E does not contain A, B, such that A attacks B
- E defends an argument C iff for each argument B that attacks C, E contains an argument that attacks B

Terminology contd.

E is:

- admissible iff it is conflict-free and legal labelling w.r.t in/out
- **complete extension** iff E is admissible and legal labelling w.r.t in/out/undec
- **preferred extension** iff E is a maximal complete extension (w.r.t set inclusion)
- grounded extension iff E is a minimal complete extension (w.r.t set inclusion)

Agreement reaching

Step 1:

• Compute set of extensions in a reduced AAF

Step 2:

Choose a subset of extensions that maximizes the extent of agreement over V

Step 1: Compute set of extensions in a reduced AAF

- in \rightarrow all attackers are out
- $out \rightarrow$ there is an attacker that is in
- undec → not all attackers are out and no attacker is in

Step 1 contd.

- Apply Argument Labelling
- in \rightarrow all attackers are out
- $out \rightarrow$ there is an attacker that is in
- undec → not all attackers are out and no attacker is in

Step 1 contd.

- in \rightarrow all attackers are out
- $out \rightarrow$ there is an attacker that is in
- undec → not all attackers are out and no attacker is in

Step 1 contd.

in = {A,C,E} out={B,D} undec={}

in = {B,E} out={A,C,D} undec={}

in = {E} out={D} undec={A,B,C}

Preferred extension

Preferred extension

Grounded extension

Step 2: Maximize the extent of agreement over V

- Let E, E' \subseteq A
- $V_E = U_{A \in E \cap Ap} val(A)$
- $V_{E} = U_{A \in E' \cap Ap} val(A)$
- V_E reaches maximal extent of agreement over V iff $\nexists E'...$
- ... such that $V_{E} > V_{E}$ (in terms of priority)

Example - What is V_E

- $V_E = U_{A \in E \cap Ap} val(A)$
- E1 = {B, E}
- A_p = {A, B, C}
- $V_{E1}^{r} = val(B) = \{v_{h}, v_{l}\}$

Example - What is V_E (contd.)

- $V_E = U_{A \in E \cap Ap} val(A)$
- E2 = {A, C, E}
- A_p = {A, B, C}
- $V_{E2}^{r} = val(A) U val(C) = \{v_h, v_r, v_a, v_g, v_p\}$

Step 2: Lifting Principle

• Elitist principle $V_1 \succeq_{Eli} V_2$ iff: $v \lor v \in V_1 \exists v \in V_2$ such that $v \ge v$

• Democratic principle $V_1 \succeq_{Dem} V_2$ iff: $\exists v' \in V_1 \forall v \in V_2$ such that $v' \ge v$

Step 2: Lifting Principle - Example

Consider following partial ordering:

- $V_1 \ge V_r \ge V_p \ge V_a \ge V_g \ge V_h$
- $V_{E1} = \{V_h, V_l\}$ • $V_{E2} = \{V_h, V_r, V_a, V_a, V_b\}$

- Elitist principle $V_1 \succeq_{Eli} V_2$ iff: $v' \in V_1 \exists v \in V_2$ such that $v' \ge v$
- Democratic principle $V_1 \succeq_{Dem} V_2$ iff: $\lor v \in V_2 \exists v' \in V_1$ such that $v' \ge v$

- We have $V_{E1} \succeq_{E1i} V_{E2}$ since $v_h \ge v_h$ and $v_l \ge v_h$
- We have $V_{E1} \succeq_{Dem} V_{E2}$ since $v_{l} \ge v_{h,r,a,g,p}$

Example contd.

Consider following partial ordering:

- $V_l \ge V_r \ge V_p \ge V_a \ge V_g \ge V_h$ • $V_{E1} = \{V_h, V_l\}$
- $V_{E2} = \{v_h, v_r, v_a, v_g, v_p\}$

- Elitist principle $V_1 \succeq_{Eli} V_2$ iff: $v' \in V_1 \exists v \in V_2$ such that $v' \ge v$
- Democratic principle $V_1 \succeq_{Dem} V_2$ iff: $\lor v \in V_2 \exists v' \in V_1$ such that $v' \ge v$

- We have $V_{E2} \succeq_{Eli} V_{E1}$ since $v_{h,r,a,q,p} \ge v_h$
- We do not have $V_{E2} \succeq_{Dem} V_{E1}$ since $\nexists v \in V_2 v \ge v_1$

Example Lifting - Conclusion

- E1 maximizes the extent of agreement over the set of values by using both the democratic and elitist principles. Since we have:
 - $\begin{array}{ccc} \circ & \mathsf{V}_{\mathsf{E1}} \succeq_{Eli} \mathsf{V}_{\mathsf{E2}} \\ \circ & \mathsf{V}_{\mathsf{E1}} \succeq_{Dem} \mathsf{V}_{\mathsf{E2}} \end{array}$

• E2 maximizes the extent of agreement over the set of values by using the elitist principle. Since we have:

 $\circ \quad \mathsf{V}_{\mathsf{E2}} \succeq_{Eli} \mathsf{V}_{\mathsf{E1}}$

Agreement Reaching

- Derivability
- Agreement Reaching
- Justification in a Dialogue Graph

Agreement Reaching

- Assume → maximize the extent of agreement using the democratic principle
- Action to be selected \rightarrow Alert the police
- Because...

Derivability

"The police should be alerted" is a conclusion of an argument B, which can be derived from an observation "a child smokes marijuana" and two norms "if a child smokes marijuana, their behavior counts as an illegal behavior" and "if there is an illegal behavior then the police should be alerted".

Agreement Reaching

The extension $E1 = \{B, E\}$ which contains the argument B is selected since E1 maximizes the extent of agreement over the set of values by using democratic principle.

Justification in a Dialogue Graph - Discussion Game

• Play rules:

- Every move of M (besides the first one) needs to be an attacker of the directly preceding move of S
- Every move of S needs to be attacker of some previous move of M
- S is not allowed to repeat his moves
- M can repeat his moves
- Winning rules:
 - \circ ~ If S uses an argument that was previously used by M then S wins
 - If M uses an argument that was previously used by S then S wins
 - If M cannot make a move then S wins
 - If S cannot make a move then M wins

M: in(B) S: out(A) M: in(B) S: out(D) M: in(E)

M wins the game, S can not move

Assumptions

- Clarify origin and priority of the values for an AMA
- Knowledge-based representation
- Stakeholder assumptions
- Argumentation-based engine assumptions

Challenges

- How to decide on the ordering of the ethical values?
- How to ensure that all stakeholders are treated fairly?

Conclusion

- Argumentation-based architecture
- Moral agents as social agents
- Ability to take reasoning of others into account...
- ... by combining normative systems of multiple stakeholders to...
- ... reach an ethical decision.

Thank you for listening.