

Data Driven & Goal Driven XAI

HaoCheng Ho ID: 0160617622

24/11/2020

Outline

- Motivation
- Background
- Review Methodologies
- Systematic Literature Review
- Result
- Conclusion

Motivation

- Global investment on AI: 12 billion USD (2017) to 52.2 billion USD (2021)
- Revenues from the AI market worldwide: 480 billion USD (2017) to 2.59 trillion USD (2021)
- Al is an inescapable technology among the Gartner: "Top 10 Strategic Technology Trends for 2018"

Motivation (contd.)

- Al is already present in our daily life (Netflix, Amazon, Facebook, Google)
- Important to know the reasoning behind decisions (ex: disease diagnosis by AI)
- "Right to explanation" in the <u>General Data Protection Regulation</u> (GDPR), which comes into effect on May 25, 2018 across the EU
- AI algorithms lack transparency (especially ML algorithms)
- Explainable Artificial Intelligence (XAI) makes AI more "transparent"

Background

• Google Trends result for the term "Explainable Artificial Intelligence"

• Google Trends results, comparing "Explainable" and "Interpretable" according to the context.

- Recap: What is XAI?
 - Underlying causes to its decisions are understandable by humans.
 - Two types: data-driven & goal-driven
- Data-driven XAI (explaining black-box algorithms)
 - Interpret the decision of ML algorithm given the data used as an input.
- Goal-driven XAI (explainable agency)
 - Explain the actions and reasons leading to their decisions.

- Why do we need XAI? (examples)
 - Commercial benefits
 - Ethics concerns
 - Regulatory considerations
 - Essential for users to trust the AI
- 4 categories of reasons:
 - Explain to justify
 - Explain to control
 - Explain to improve
 - Explain to discover

- What are the XAI application domains?
 - Transportation
 - Automated/Autonomous Vehicles
 - Healthcare
 - Medical diagnosis
 - Legal
 - Criminal justice
 - Finance
 - Wealth-management
 - Investment advice
 - Military
 - Other domains: Cybersecurity, Education, Entertainment, Government, etc.

- What are the technical challenges of XAI?
 - We could ask ourself the following:
 - Why the use of XAI is not systematic?
 - Why is not everyone using XAI?
 - Black-box, for example Deep Neural Networks (DNN)
 - "Modern" ML algorithm gets more and more complex
 - For the same set of input, complex ML algorithms can produce different models and the accuracy of the results remains the same.
- There is a trade-off between accuracy and interpretability

Review Methodology

- Complexity related methods
 - More complex -> more difficult to interpret/explain
- "Low" complexity
 - For example: we create a "white-box" AI/ML
 - Simple to explain (intrinsic interpretable models)
 - Trade-off between "Accuracy" and "Interpretability"
- "High" complexity
 - This means "black-box" AI/ML
 - Reverse engineering to provide explanations (post-hoc explanations by example)
 - Has high accuracy

- Scoop related methods
 - Global interpretability (understand the entire model)
 - Local interpretability (understand a single prediction)
- Global interpretability
 - For example: climate change model
 - But limited in predictability if we want interpretability.
- Local interpretability
 - For example: image classification model
 - But limited in interpreting the whole model

- Model-agnostic interpretability
 - Explaining using: Visualization, knowledge extraction, influence methods and example-based explanation
 - Less accurate explanation

- How should the AI model be explained to humans?
 - Challenge of designing XAI:

Communicate a complex computational process to human (with ML expertise?)

- Human-like explanations
 - Three major findings:
 - Why event A happened instead of event B? And not why event A actually happened.
 - Focuses only on 1 or 2 possible causes. (Not all the causes forming the decision.)
 - Explanations are social conversation to transfer knowledge. (Same mental model, explainer & explainee)
- Human-friendly explanations
 - Through simulations, chain of reasoning, multiple examples

- There are three distinct explanation phases:
 - Explanation Generation
 - Explanation Communication
 - Explanation Reception
- "It is not enough to just explain the model, the use has to understand it."
 - Give the user the possibility to ask questions to the AI model
 - Thus, we need an interaction between human and machine.

Systematic Literature Review

- Selection criteria:
 - Recent Paper
 - (2008 2018)
 - Relevance
 - Primary Study
 - Accessibility
 - IEEExplore, Science Direct, ACM, and Google Scholar
 - Explainable Agency
 - Goal-driven XAI
 - Singularity/Originality
 - Explanation as a *Communicative Action*
- 62 papers are selected according to these criteria

Systematic Literature Review (contd.)

• <u>Structured</u> <u>Research</u> <u>Questions</u> (SRQs)

- SRQ1: Demographics
- SRQ2: Application scenarios
- SRQ3: Drives (needs)
- SRQ4: Social science and psychological background
- SRQ5: Design
- SRQ6: Dynamics (context-aware, user-aware)
- SRQ7: Presentation
- SRQ8: Evaluation/Framework
- SRQ9: Future challenges

Result

- SRQ1: Demographics
- Increasing growth over the last 5 years

- USA, Netherlands and UK
- European research on this subject might increase (GDPR)

• SRQ2: Application scenarios

- SRQ3: Drives (needs)
 - Transparency
 - Trust
 - Collaboration
 - Intent communication
 - Control
 - Education
 - Debugging

• SRQ4: Social science and psychological background

• SRQ5: Design

- 22 NA (not available)
- 18 Ad-hoc (customized methods)
- 9 BDI (Belief, Desires, Intentions)
- 3 MDP (Markov Decision Process)
- 3 NN (Neural Networks)
- 3 POMDP (Partially Observable Markov Decision Process)
- 2 POSH (Parallel-rooted-ordered Slip-stack Hierarchical Action Selection)
- 2 STRIPS (Stanford Research Institute Problem Solver)

No. of papers

• SRQ6: Dynamics (context-aware, user-aware)

• SRQ7: Presentation

• SRQ8: Evaluation/Framework

• SRQ9: Future challenges

Quality Criteria Assessment

- Quality criteria:
 - Motivation
 - Context
 - Results
 - Limitations
- Graded at 3 levels:
 - "Good", "Arguable" and "poorly presented"
- Each paper was evaluated by at least 2 reviewers and their results averaged.

Conclusion

- We focused on the 5 W's (What, Who, When, Why, Where) and How to cover all aspects related to XAI
- This survey reviewed a portfolio of explainability approaches and organized them from different perspective.

Future works

- Considerable effort will be required in the future to tackle the challenges and open issues with XAI
- Human's role is not sufficiently studied in existing XAI
- Most of the existing works focus on interpretability in ML
 - But this is just one type of Al
- In the era of Internet of Things (IoT)
 - We also need machine-to-machine XAI
 - Likely that future XAI approaches, provide both kinds of explanation

Thank you for listening! ③

References (Papers)

- Sule Anjomshoae, Amro Najjar, Davide Calvaresi, and Kary Framling. 2019. Explainable agents and robots: Results from a systematic literature review. In 18th International Conference on Autonomous Agents and Multiagent Systems
- A. Adadi and M. Berrada, "Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)," IEEE Access, vol. 6, pp. 52138–52160, 2018.