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Why do we need an explainer for a Machine learning model ?
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Why do we need an explainer for a Machine learning model ?
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The case for explanations
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The case for explanations

Common but not efficient solutions :

Interpretable models Measuring Accuracy Test on real world datas
Decision trees Cross validation A /B testing
Accuracy - Interpretability Data leakage Very expensive

Trade off (Fake accuracy )



The case for explanations

True Class: ‘ Atheism

Algorithm 1
Words that A1 considers important:

GOD!

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hg.verdix.com
Organization: Verdix Corp

Lines: 8

Algorithm 2
Words that A2 considers important:

Posting
Host

R

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8




The case for explanations

Desired Characteristics for Explainers

Interpretable Local fidelity model-agnostic Global
perspective



LIME : Local Interpretable Model-agnostic Explanations
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LIME : Local Interpretable Model-agnostic Explanations

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples N
Require: Instance z, and its interpretable version z’

Require: Similarity kernel 7., Length of explanation K
Z <+ {}

forie {1,2,3,...,N} do
z; < sample_around(z")
Z — ZU (2, f(2i), me(2i))
end for

w + K-Lasso(Z, K) © with 2z, as features, f(z) as target
return w




Example 1: Text classification with SVMs

Algorithm 2
Words that A2 considers important: Predicted:
Posting ‘ Atheism
Host Prediction correct:
Re J
by
in
Nntp

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

20 newsgroup data set

Accuracy :94%
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Example 2 : Deep networks for images

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

Classification prediction by Google’s Inception neural network
Electric Guitar (p = 0.32)

Acoustic guitar (p = 0.24)

Labrador (p = 0.21)
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SP-LIME : Submodular Pick for explanation models
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C: coverage (total importance of the feature)
V: set of explanations

W: Matrice of instance-feature

I: global feature importance
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SP-LIME : Submodular Pick for explanation models

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all z; € X do

Wi <+ explain(z;, z;) > Using Algorithm
end for
for j€{1...d"} do
I; < />, IWij| > Compute feature importances
end for
V «—{}
while |V| < B do > Greedy optimization of Eq
V <~V Uargmax, c(V U {i}, W, I)
end while
return V




Simulated User Experiments

Experiment setup

Data set : reviews on Books and DVDs (2000 instances each)

Classification Problem : positive and negative reviews

Classification models : DT,NN,LR,SVM,RF

Explainers : LIME,Parzen,greedy,Random
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Simulated User Experiments

Are the explanations faithful to the model?
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(a) Sparse LR (b) Decision Tree (a) Sparse LR (b) Decision Tree
Books DVDs

Recall on truly important features for two interpretable classifiers on the Books/DVDs dataset
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Simulated User Experiments

Should I trust this prediction ?

Books DVDs

LR NN RF SVM LR NN RF SVM

Random 14.6 14.8 14.7 14.7 14.2 14.3 14.5 144
Parzen 84.0 87.6 94.3 92.3 87.0 &81.7 94.2 87.3
Greedy 53.7 474 45.0 53.3 52.4 58.1 46.6 55.1
LIME 96.6 94.5 96.2 96.7 96.6 91.8 96.1 95.6

Average F1 of trustworthiness for different
explainers on a collection of classifiers and datasets
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Simulated User Experiments

Can I trust this model?
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(b) DVDs dataset

Choosing between two classifiers, as the number of instances shown to a simulated user is varied.
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Evaluation With human subjects

Experiment setup

Training Data set 1: 20 newsgroup
Training Data set 2 : Cleaned 20 newsgroup

Test Data set : 20 news group
Test Data set : Religion data set

Classification Problem : Christianity vs. Atheism

Classification models : SVM , cleaned SVM

Explainers : LIME,greedy
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Evaluation With human subjects

Can users select the best classifiers ?

SVM Cleaned 100
SVM [ Random Pick (RP)
8 1 Submodular Pick (RP) 8?.0
[s) 80.0
Religion | 57.3% | 69.0% 5 B0 1 751.0
§ 681.0
g 60
20 94% 88.6% -G
newsgroup
40
greedy LIME

Average accuracy of human subject in choosing between two classifiers
Accuracy measure verage accuracy of human subject 1 ing between tw i
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Evaluation With human subjects

Accuracy on the “real world”
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Can non experts improve the classifier ?

== Submodular pick, average across all paths per round
=@= Random pick, average across all paths per round
Submodular pick, average across users in each path
Random pick, average across users in each path
= No cleaning

1

Rounds of data cleaning

2

e

Submodular pick LIME
Random pick LIME
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Evaluation With human subjects

Do Explanations lead to insight ?

(a) Husky classified as wolf (b) Explanation

Before After
Trusted the bad model 10 out of 27 3 out of 27

Snow as a potential feature 12 out of 27 25 out of 27

“Husky vs Wolf” experiment results
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Related works

Gelsat

Modeltracker

Letting user know when the systems are likely to to fail
Exposing users to different kind of mistakes

Using interpretable models in medical domain

Eluci debug for text

Computer vision systems (alignment )

Gradient vector as explanation
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Conclusion and Future works

Importance of trust in human-Machine learning systems interactions
Potential of explainability in assessing trust

Proposing LIME as an approach to explain the prediction of any model
Introducing SP-LIME providing a global view of any model

With explainability even non experts can achieve feature engineering

Fix pick step issue when Decision tree is used as the explanation model

Investigate in other domains : speech,video,medical ,etc.
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LIME & GDPR
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Thank you for your attention :)
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