Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Authors: Ramprasaath R. Selvaraju · Michael Cogswell · Abhishek Das · Ramakrishna Vedantam · Devi Parikh · Dhruy Batra

Supervisors

Dr. Amro NAJJAR

Dr. Sana NOUZRI

University of Luxembourg

Presented by Saddam Hossain (09027635C)

Agenda

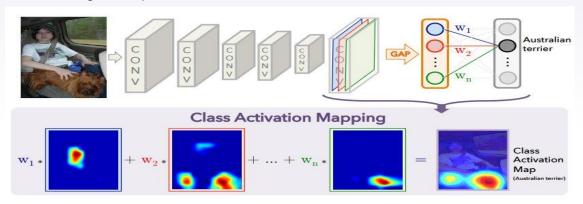
- Why interpretability matters?
- Motivation
- Contributions
- Approach
- Evaluating Localization
- Evaluating Visualizations
- Diagnosing image classification CNNs
- Image Captioning and VQA
- Related Work
- Demo
- Conclusion

Why interpretability matters?

- ► The lack of decomposability of deep network into intuitive and understandable components makes them hard to interpret
- Transparent model is necessary
 - To build trust in intelligent systems and move towards into our everyday life
- When Al is weaker
 - ▶ To identify failure modes
- When Al is on par with humans and reliably deployable
 - ▶ The goal is to establish trust and confidence in users
- When Al is significantly stronger than humans
 - Machine teaching a human about how to make better decisions

Motivation

CAM: Learning deep features for discriminative localization



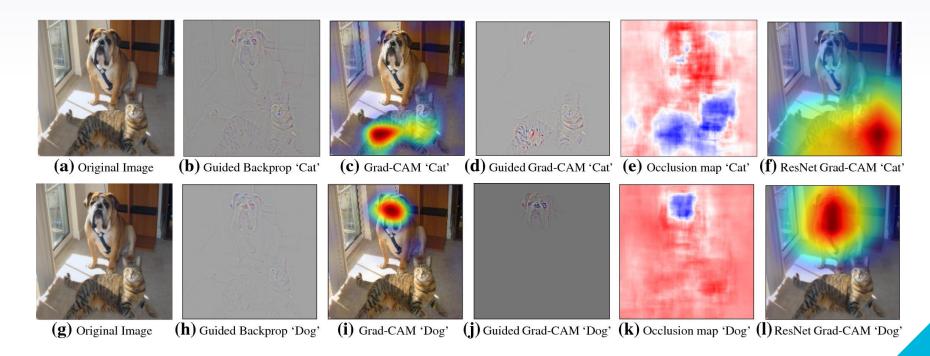
- Class Activation Mapping is applicable to only GAP layers
- Make CAM to applicable to a wide variety of CNN models
 - CNNs with fully-connected layers (e.g. VGG)
 - CNNs for structured outputs (e.g. captioning)
 - CNNs used in tasks with multi-modal inputs (e.g. VQA)

Contributions

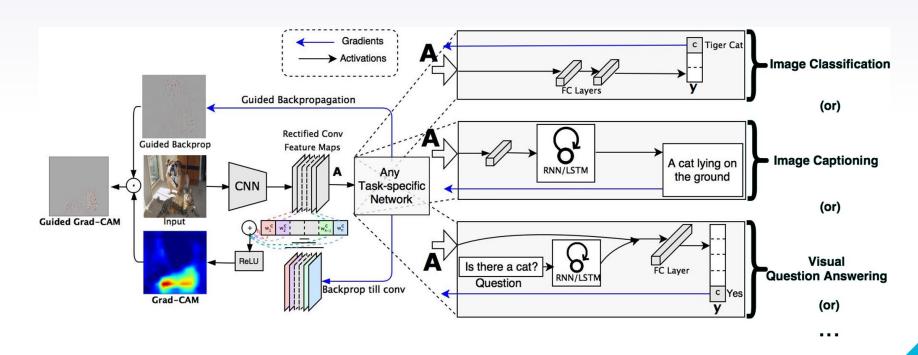
- Apply Grad-CAM to any CNN-based network without requiring architectural changes or re-training
- Authors show a proof-of-concept of how interpretable Grad-CAM visualizations.
- Apply Grad-CAM to existing top-performing classification, captioning, and VQA
- Authors present Grad-CAM visualizations for ResNets
- Authors use neuron importance from Grad-CAM
- Conduct human studies if it helps establish human trust and untrained user can discern a stronger network

What makes a good visual explanation?

a) class-discriminative (b) high-resolution



Approach



Grad-CAM as a generalization of CAM

- Formally prove that Grad-CAM generalizes CAM for a wide variety of CNN-based architectures
- This approach modifies image classification CNN architectures replacing fully-connected layers with convolutional layers and global average pooling, thus achieving class-specific feature maps
- Authors introduce a new way of combining feature maps using the gradient signal that does not require any modification in the network architecture
- For a fully-convolutional architecture, Grad-CAM reduces to CAM.
 Thus, Grad-CAM is a generalization to CAM

Evaluating Localization Ability of Grad-CAM

Weakly-Supervised Localization Weakly-Supervised Segmentation

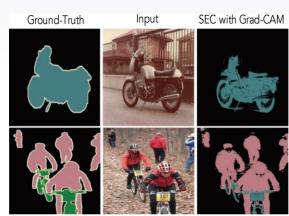
Pointing Game

Weakly-Supervised Localization

	Classification		Localization	
	Top-1	Top-5	Top-1	Top-5
VGG-16				
Backprop (Simonyan et al. <u>2013</u>)	30.38	10.89	61.12	51.46
c-MWP (Zhang et al. <u>2016</u>)	30.38	10.89	70.92	63.04
Grad-CAM (ours)	30.38	10.89	56.51	46.41
CAM (Zhou et al. <u>2016</u>)	33.40	12.20	57.20	45.14
AlexNet				
c-MWP (Zhang et al. <u>2016</u>)	44.2	20.8	92.6	89.2
Grad-CAM (ours)	44.2	20.8	68.3	56.6
GoogleNet				
Grad-CAM (ours)	31.9	11.3	60.09	49.34
CAM (Zhou et al. <u>2016</u>)	31.9	11.3	60.09	49.34

Weakly-Supervised Segmentation

- To seed with weak localization cues, encouraging segmentation network to match these cues
- To expand object seeds to regions of reasonable size based on information about which classes can occur in an image
- To constrain segmentations to object boundaries that alleviates the problem of imprecise boundaries already at training time



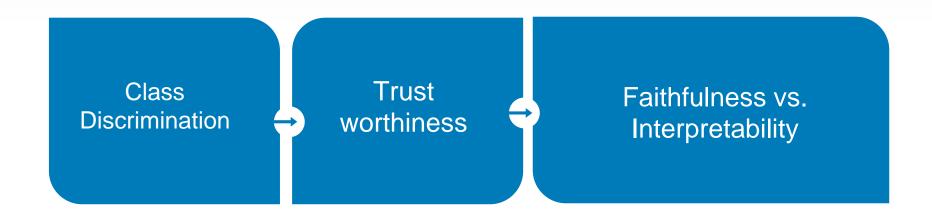
Pointing Game

Zhang et al. (2016) introduced the Pointing Game experiment to evaluate the discriminativeness of different visualization methods for localizing target objects in scenes

$$Acc=rac{\#Hits}{\#Hits+\#Misses}$$

 Grad-CAM outperforms c-MWP (Zhang et al. 2016) by a significant margin (70.58% vs.. 60.30%)

Evaluating Visualizations



Class Discrimination

- 43 AMT workers, 4 visualizations, 90 image category pairs, 9 ratings each
- Deconv vs. Guided backprop vs. Guided Grad CAM vs. Deconv Grad-CAM
- 53.33% vs. 44.44% vs. 61.23% vs. 61.23%

What do you see?

Your options:

- Horse
- Person

(b) AMT interface for evaluating the class-(a) Raw input image. Note that this is not a discriminative property

Both robots predicted: Person

Robot A based it's decision on Robot B based it's decision on

Which robot is more reasonable?

- O Robot A seems clearly more reasonable than robot B
- O Robot A seems slightly more reasonable than robot B
- O Both robots seem equally reasonable
- O Robot B seems slightly more reasonable than robot A
- O Robot B seems clearly more reasonable than robot A

(c) AMT interface for evaluating if our visualizations instill trust in an end user

Trust worthiness

- 54 AMT workers, 2 classifiers (AlexNet, VGG-16), 2 visualizations
- Show same prediction with similar output score
- Human can identify VGG-16 is better
- Guided Grad-CAM shows higher difference
- 1.27 (vs. 1.0 with Guided Backprop)

Method	Human classification accuracy	Relative reliability	Rank correlation w/occlusion
Guided Backpropagation	44.44	+1.00	0.168
Guided Grad-CAM	61.23	+1.27	0.261

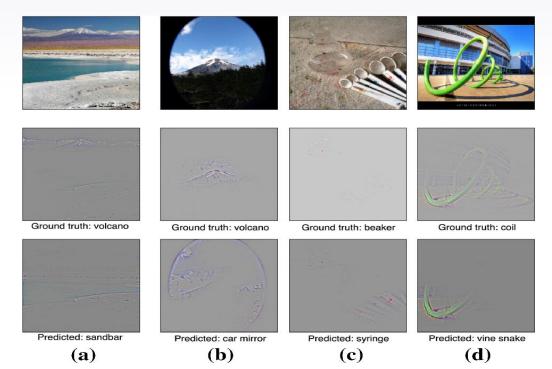
Faithfulness vs. Interpretability

- CNN score after occlude image patches
- Guided Grad-CAM assign high intensity
- Grad-CAM visualizations are more interpretable
- Score correlates highly with Grad-CAM
- Grad-CAM is more faithful to the model

Method	Human classification accuracy	Relative reliability	Rank correlation w/occlusion
Guided Backpropagation	44.44	+1.00	0.168
Guided Grad-CAM	61.23	+1.27	0.261

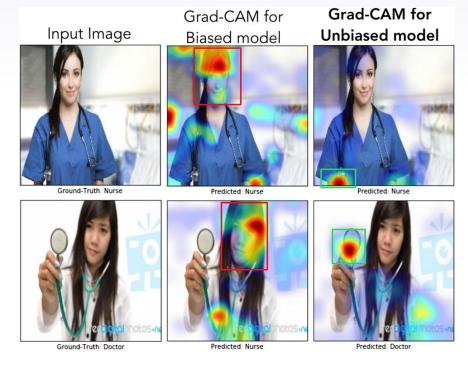
Diagnosing image classification CNNs

Analyzing failure modes for VGG-16



Diagnosing image classification CNNs

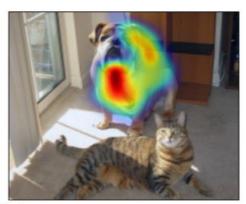
Identifying bias in dataset



Counterfactual explanations

- Using a slight modification to Grad-CAM
- Use negative values to find regions that decreases output score

(a) Original Image



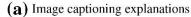
(b) Cat Counterfactual exp (c) Dog Counterfactual exp

Image captioning

- Use neuraltalk2: VGG-16 for image and LSTM language model
- No explicit attention
- Compare with DenseCap
- Consist of Fully Convolutional Localization Network and LSTM

A group of people flying kites on a beach

A man is sitting at a table with a pizza

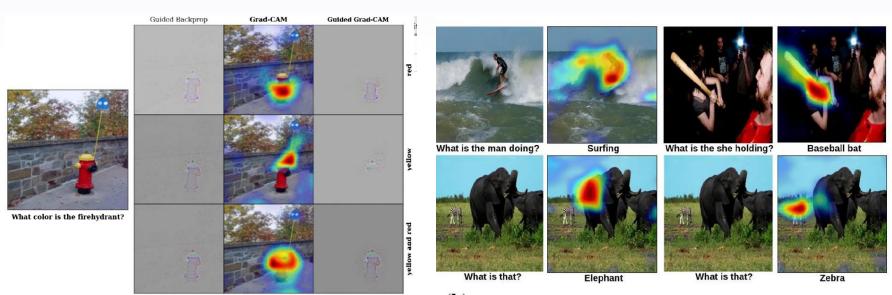


(b) Comparison to DenseCap

Visual Question Answering

(a) Visualizing VQA model from [38]

Grad-CAM correlation (with occlusion maps) of 0.60±0.038



(b) Visualizing ResNet based Hierarchical co-attention VQA model from [39]

Visual Question Answering

- Comparison to Human Attention
 - Collected human attention maps for a subset of the VQA dataset
 - Grad-CAM and human attention maps have a correlation of 0.136, which is higher than chance or random attention maps
- Visualizing ResNet-Based VQA Model with Co-Attention
 - Use a 200 layer ResNet to encode the image

Related Work

- Visualizing CNNs
 - Highlight important pixels: non discriminative
 - Synthesize images to maximally activate a network unit or invert a latent representation: not for specific input images
- Assessing Model Trust
 - Motivated by notions of interpretability
 - ▶ There are some methods to assess trust in models
- Aligning Gradient-Based Importances
- Weakly-Supervised Localization
 - Perturbing inputs by occlusion

Demo

Grad-CAM: Gradient-weighted Class Activation Mapping

Saud-CAM highlights regions of the image the naptooling model looks at while making predictions

Try Grad-CAM: Sample Images

Click on one of these images to send 3 to our servers (Or asset your own images below). •

THANKS!

Any questions?

